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Summary
• Conventional short-read sequencing methods struggle with

detecting complex variants in key genes associated with
inherited genetic disorders of high prevalence, necessitating
multiple complicated workflows which produce results that
often lack comprehensive detection of pathogenic variants.

• We developed a prototype assay based on PCR-enrichment,
nanopore sequencing, and machine learning models to enable
multiplex detection of diverse variant classes including SNVs,
INDELs, Exon del/dups, SVs, gene CNVs and STRs in a single
workflow.

• We evaluated performance in collaboration with Dr. Lebre at
CHU Reims on a set of 155 unique residual clinical samples
collected from centers all over France.

• Sample-level genotype agreement was 100% for all samples
that passed QC with variants that were either reported or
found to be wild-type with no comparator information.

Deidentified and previously genotyped residual clinical genomic 
DNA samples isolated from whole blood (WB) donors were 
provided from sites across France (N=155). Target regions were 
enriched in 1-4 PCR reactions, barcoded, pooled and sequenced 
on MinION flow cells (R10.4.1) with a Mk1B (ONT) at CHU Reims 
by Dr. Lebre’s group. Bespoke bioinformatics pipelines automated 
analysis of exon and whole gene gain or loss, gene-pseudogene 
fusions, and large structural variants. Clair3 and Sniffles2 were 
utilized for SNV/INDEL and SV identification5,6. Performance was 
demonstrated by comparing automated and manual variant calls 
to comparator data provided by collaborators.
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Introduction
Everyone is a genetic carrier of an inheritable disease or 
condition1. Carrier screening (CS) identifies couples at risk for 
having a child with a severe genetic disorder. Although Next-
Generation Sequencing (NGS) is a widely used method, it fails to 
resolve genes with complex pathogenic regions including GC-rich 
tandem repeats, copy number variation, pseudogenes, and 
structural variation2,3. Therefore, multiple specialized techniques 
are employed to identify and characterize pathogenic variants of 
interest.
To address this shortcoming for researchers, we combined three 
innovations: 1) short- & long-range PCR enrichment, 2) nanopore 
sequencing, and 3) customized software analysis pipelines. Using 
a single workflow, we developed a modular panel to interrogate 11 
genes that represent ~70% of all pathogenic variants associated 
with inheritable diseases that impact neonates4. Here we describe 
results utilizing this prototype assay to genotype CFTR, SMN1, 
SMN2, FMR1, HBA1, HBA2, HBB, F8 intron inversions, GBA, 
CYP21A2, and TNXB from 155 residual clinical gDNA samples 
collected from centers across France.
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Figure 1. PCR/nanopore Panel Design and Workflow Identifies Pathogenic 
Variants for 11 genes Associated with Common Inherited Genetic Disorders.
A) Residual clinical gDNA samples were procured from ten labs across France
and tested at CHU Reims by Dr. Lebre’s group. B) The workstream included PCR
enrichment, nanopore sequencing, and automated data analysis for C) 11 genes
regions in 4 mixes. D) Multiple variant classes are analyzed.

1C) 4 Mix Modular Design

1B) Single Assay Workstream

1D) Variant Types Analyzed
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1A) 155 Residual Clinical Samples Collected from Across France 

Conclusion
• The prototype PCR/nanopore assay accurately resolves

multiple challenging variants across several variant classes
for 11 of the most common gene targets associated with
heritable disease.  Eight genes with comparator data
collected are represented.

• The assay utilizes a single-platform, streamlined workflow,
and has potential to greatly reduce variant detection
complexity, reflex testing, and turn around times compared to
current workflows.

• Accompanying software simplifies data navigation, provides
QC metrics, provides variant call information, and allows in-
depth investigation of sequencing data and analysis results.

• Data for 105 of 155 samples are presented here. Over 95%
(100/105) passed QC and 97/100 had comparator data or
were WT with no comparator information. 97/97 (100%)
agreed with expected sample-level genotypes.
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Figure 2. Mix A was 100% Concordant with SNV and Copy Number Across 24 
CFTR and 13 SMN1/2 Samples. A) Of 24 samples, 5/5 agreed with exon del/dup 
comparator data. Two samples did not pass QC for exon del/dup, 17 samples 
matched wild-type (WT) or had no comparator information. B) Example of a 
heterozygous (HET) F508del variant classified as Pathogenic/Likely Pathogenic 
(P/LP) by ClinVar. 17/17 samples with HET P/LP variants agreed with comparator 
data. One additional P/LP variant was identified in a sample without comparator 
information. Six WT samples matched or were not reported. C) 13/13 samples 
agreed with copy number (Cp#) reported in the comparator data for both SMN1 
and SMN2. Though not previously reported, two samples were identified as 
hybrids with an allele aligning to SMN1 with yet c.840T from SMN2. One sample 
previously identified with silent carrier SNVs (c.*3+80T>G HET, and 
c.*211_*212del HET) matched the reported genotype.

Across CFTR (n=24) & SMN1/2 (n=13) sample-level agreement 
was 100% for all samples that passed QC (Mix A)
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2C) SMN1 & SMN2 Gene-Level Copy Number Agreement

2A) CFTR Structural Variant (SV) Accuracy
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2B) CFTR Indel Example
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Del Ex02-08/09
Del Ex08/09
Del Ex23-25/26/27
Dup Ex8/9-11
WT

Sample B23
c.1521_1523del | F508del HET

HBA1/2 & HBB variant level (SV & SNV) agreement was 100% 
for samples that passed QC (up to 33 samples; Mix C)

Figure 5. Mix C was 100% Concordant with Functional Gene Copies of HBA and 
HBB Reported in Comparator Data. A) A set of 14 “sentinel” amplicons target 
regions of the hemoglobin alpha cluster to differentiate known common 
breakpoints. Amplicon fold change patterns identify WT, compound HET SEA | 
3.7del, HET α3.7del | WT, and anti-3.7 | WT. HBA1/2 SNV and SV variant level 
classification was 100% for samples that passed QC (n=31/33). B) Two 
amplicons cover the HBB gene and differentiate two classes of SVs: 
Sicilian/HPFH-like (full-gene deletion) from Hb Leopore-like (only Exon 1-2 
deletion). C) An example of a compound HET HBB Hb S “sickle cell” SNV. Sample 
M16 has 0 functional allele copies of HBB, 1 copy of HBA2 and 2 copies of HBA1. 
D) Functional allele copies were assessed for 28/31 samples and 100% agreed
with comparator data in both HBA1/2 and HBB or were WT but had no
comparator information. We identified two SNVs and an Exon 01-02 del in HBB 
that were not reported in comparator data.
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5D) HBA and HBB Sample-Level Functional Copy Number Agreement
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F8 Intron 1 and 22 inversion sample-level agreement was 100% 
for all samples that passed QC (11/12 samples; Mix D)
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Figure 4. F8 Variant Genotype was 100% Concordant with Comparator Data 
for Intron Inversion and Zygosity. The algorithm identifies reads associated with 
the intronic H1 (intron 1 and 22) and H2 (intron 1 only) intergenic regions of the 
WT sample, or the H1 Fusion to H2 (intron 1) or H2/3 (intron 22) intergenic 
region indicating an inversion. Of 11 samples that passed QC for read depth at 
the variant level, 9 were WT for intron 1, 1 each had a heterozygous (HET) or 
homozygous (HOM) inversion. For intron 22, 2 samples were WT, 3 were HET 
and 6 were HOM for inversion. At the sample level, an inversion was identified in 
all F8 samples. In the dataset, 4 CYP21A2 and 5 GBA (not shown; comparator 
data unavailable) and 2 Calibrators were WT for both introns.
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FMR1 3’ UTR CGG repeat sizing agreement was 100% for alleles 
previously identified by PCR/CE (23 samples; Mix B)
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Figure 3. FMR1 was 100% Concordant with Repeat Sizing Reported by PCR/CE 
(Precision +/- 1 up to 70 CGG, +/- 3 from 71-120 CGG and +/-5% above 120 
CGG) Across the Categorical Range (20-200 repeats) for 23 FMR1 Samples.  
A) Sizing algorithms identify reads corresponding to CGG repeat sizes for allele
identification. Visual mapping displays a historgram of read counts for each
repeat size. Examples show 3 female samples, each with 1 normal (NOR) allele
along with a categorical intermediate (INT), premutation (PM) or a full mutation
(FM) allele. B) FMR1 CGG repeat size correlation plot for 44 alleles colored by
sample-level category (background). Four mosaic alleles (3 PM, 1 NOR) were not
reported in comparator data and did not change genotyping. C) FMR1 sample-
level genotype agreement.
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3B) FMR1 Repeat Sizing Accuracy
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