

Accurate, High Sensitivity Next Generation Sequencing of Targeted Cancer Genes in FFPE and FNA Clinical Specimens

Liangjing Chen, Sachin Sah, Andrew G. Hadd, Elizabeth Mambo, Jeffrey Houghton, Kalyan Buddavarapu, Tiffany Sanford, Lana Garmire, Ashish Choudhary, Alex Adai, and Gary J. Latham Asuragen, Inc., Austin, Texas 78744

SUMMARY

- Procedures for direct amplicon sequencing on two orthogonal Next Generation Sequencing (NGS) platforms were developed to enrich for mutations from clinically actionable gene regions using FFPE cancer specimens.
- The various enrichment procedures enabled uniform coverage across both focused (35 amplicon), expanded (190 amplicon) and broad (981 amplicon) content panels, with NGS read depths of >1000X and detection of variants representing <5% of reads.
- The results support the utility of high sensitivity, high resolution mutation assessments across thousands of loci in heterogeneous FFPE tumor specimens.
- Samples tested by both the PGM and GAIIx platforms were also highly concordant across all sample types with orthogonal enrichment protocols

16 Cancer Gene Targeted NGS – SuraSeq[™] 500

ABL1	FGFR1	HRAS	MET	DNA	Gene with known	Known Codon	Туре	Mixing	Expected %	lon Torrent PGM %	lon Torrent PCM Road	Illumina GAIIx %	Illumina GAIIx Read
AKT1	FGFR3	JAK2	NRAS	Sample	mutations	Change		Tatio	WILLATION	Recovered	Coverage	Recovered	Coverage
BRAF	FLT3	KIT	PDGFRA	A-549	KRAS	G12S	НОМ	35%	35	31.9	971	29.2	4072
	DET	KDAC	DIV2CA	MIA PaCa-2	KRAS	G12C	НОМ	20%	20	22.6	971	17.8	4072
EGFK	KEI	ККАЗ	PIK3CA	T24	HRAS	G12V	НОМ	10%	10	10.9	248	13.2	4424
Table 1. A	16 gene	, 35 ampl	licon	BKO	BRAF	V600E		1 - 0/	7.5	5.9	801	6.5	7772
oanel rep nutation	oresents > s in these	95% of all genes in	l Idexed in	KKU	РІКЗСА	H1047R		15%	10.5	6.6	2290	7.9	5896
COSMIC a	nd 540 k	nown mu	itations.	SK-Mel-2	NRAS	Q61R	НОМ	7%	7	10.7	600	11.2	7150
					PIC3CA	H1047L		E9/	2.5	3.5	2290	6.8	5896
				GP20	KRAS	G12D		3%	2.5	3.7	991	4.0	4072
				UCT 116	KRAS	G13D		6%	3	1.5	1024	<0.5	4072
				HCI II6	РІКЗСА	H1047R		0%	10.5	6.6	2290	7.9	5896
				SW1116	KRAS	G12A	HET	2%	1	1.4	991	1.3	4072

52 Cancer Gene Targeted NGS – SuraSeq[™] 7500

ABL1	DNMT3A	GNAQ	MET	PTCH1	TP53
AKT1	EGFR	HIF1A	MPL	PTEN	VHL
AKT2	ERBB2	HRAS	NF2	PTPN11	
BRAF	FES	IDH1	NOTCH1	RB1	
CDH1	FGFR1	IDH2	NPM1	RET	
CDK4	FGFR3	IKBKB	NRAS	SMAD4	
CDKN2A	FLT3	JAK2	PAX5	SMARCB1	
CEBPA	FOXL2	КІТ	PDGFRA	SMO	

MATERIALS AND METHODS

Three FFPE-compatible PCR-based enrichment panels were developed and tested. The first was a multiplexed PCR assay that targeted 35 amplicons in 16 cancer genes, including the most common mutations in the MAPK/ERK and PI3K/AKT pathways. The second was an expanded 46 gene and 190 amplicon panel commercialized by Life Technologies (Ion AmpliSeq[™]). The third included nearly 1000 amplicons from 52 cancer genes enriched using the RainDance RDT-1000. Primers were designed to avoid known SNPs, repetitive sequences, and pseudogenes whenever possible, and included adaptor sequences to enable direct sequencing on either the Ion Torrent PGM or the Illumina GAIIx. FFPE DNA inputs from 10 ng to 2 ug were evaluated for PCR enrichment, and samples were barcoded to enable sample multiplexing of up to 36 samples/lane (GAIIx) or 13 samples/chip (PGM). Workflows for GAIIx NGS required ~3-6 weeks, whereas sample processing on the PGM required <3 days.

52 Genes	46 Genes	16 Genes
981 Amplicons	190 Amplicons	35 Amplicons
7500 Known Mutations	739 Mutations	540 Known Mutations
SuraSeq [™] 7500	lon AmpliSeq [™]	SuraSeq [™] 500

Table 9. A 52 gene, 981 amplicon panel represents 7500 known mutations indexed in cosmic. Genes shown in bold text were sequenced across all exons.

Figure 1. As few as 1.5% variants are quantitatively detected by ultra deep NGS.

Figure 2 . Titration of FFPE tumor DNA reveals dose-dependent detection of mutations at 1-2% of total NGS reads.

Table 4. PGM NGS of 20 FFPE FNA tumor specimens demonstrates 98%

concordance with orthogonal confirmation assays.* Based on NGS read

assay with < 1% LOD. Re-biopsy of patient was negative.

coverage, below LOD by Sanger Sequencing; ** detected with a probe-based

Figure 3. A 981 amplicon panel recovers the full range of expected SNP fractions from pooled Hap Map DNA. DNA from 6 HapMap cell lines were combined at 6 different mass mixing ratios to produce 1254 data points across 209 discrete SNPs.

0.04

0.07

0.12

0.16

0.24

0.36

50%

40%

10%

0%

30%

Expected SNP Fraction

d Percent Variant = 0.983* Expected Percent Variant + 0.516 + epsil

40% 50% 60% 70% 80% 90% 100%

St Dev (epsilon) = 2.645

R² = 0.993

Concordance Sum for FFPE Sample	mary es	Orthogonal	Confirmation	Concordance Sum for 20 FNA Samp	mary les	Orthogonal C	Confirmation
ACTOSS KKAS, BKAF, and PIKS	SCA Hotspots	POS	Wt		HOTSPOTS	POS	Wt
	POS	19	3	DCM	POS	13	1*
iliumina GAIIX	Wt	2	92	PGM	Wt	1**	80

		PC	M		GAIIx	
		SuraSeq [™] 500	lon AmpliSeq™	SuraSeq [™] 500	SuraSeq [™] 7500 (100 ng)	SuraSeq [™] 7500 (1000 ng)
Л	SuraSeq [™] 500	1	0.90	0.96	0.80	0.94
IVI	lon AmpliSeq™	0.90	1	0.96	0.93	0.95
	SuraSeq [™] 500	0.96	0.96	1	0.83	0.97
Ix	SuraSeq [™] 7500 (100 ng)	0.80	0.93	0.83	1	0.90
	SuraSeq [™] 7500 (1000 ng)	0.94	0.95	0.97	0.90	1
	Known Input	0.97	0.93	0.91	0.88	0.89

Quantification

× • •

Ion Torrent

PGM

Ion Torront DCM	POS	15	0
	Wt	1	91

Table 3. Illumina GAIIx NGS of 39 FFPE tumor specimens demonstrates96% concordance and Ion Torrent PGM NGS of 16 FFPE tumor specimensdemonstrates 99% concordance with confirmation assays, includingSignature® assays run on the Luminex platform and Sanger Sequencing.

Category	Intact DNA (N=27)	FFPE DNA (N-=39)
Average Depth	38,500	24,500
Maximum	72,738	44,747
Minimum	1,784	3,432
Range within 5-fold of average	95%	95%
Median Variant	0.27%	0.3%

Table 5. Both intact cell line DNA and FFPE DNA demonstrate A) uniform read coverage, and B) low level of background base substitution variants (0.3%) on Illumina GAIIx.

46 Cancer Gene Targeted NGS: Ion AmpliSeq

		_							
Total	Sample]	JAK2	CSF1R	РІКЗСА	TP53	EGFR	BRAF	KRAS
Reads	ID		CDKN2A	NPM 1	FGFR3	SRC	ERBB2	PTPN11	NRAS
347,328	FFPE #1		ABL1	MPL	PDGFRA	GNAS	SMAD4	HNF1A	RET
			NOTCH1	MET	КІТ	SMARCB1	STK11	FLT3	PTEN
255,720	FFPE#2			SMO	KDR	VHL	JAK3	RB1	FGFR2
514,351	FFPE#3			ERBB4	FBXW7	MLH1	ALK	AKT1	HRAS
382,035	FFPE#4			FGFR1	APC	CTNNB1	IDH1	CDH1	ATM

Table 6. The Ion AmpliSeq[™] panel assesses 739 known mutational hot spots across 46 genes.

Dele Total Median Percentage Known Detected by Ion AmpliSeg™						
ole Total Median Percentage Known Detected Reads Coverage within 5x Mutations by Ion of median AmpliSeg [™]	np	oliSe	¶™			
	ole	Total Reads	Median Coverage	Percentage within 5x of median	Known Mutations	Detected by Ion AmpliSea™

FFPE #1	347,328	1137	78%	BRAF V600E	BRAF V600E
FFPE#2	255,720	953	80%	KRAS A146T PIK3CA H1047R	KRAS A146T PIK3CA H1047R
FFPE#3	514,351	1894	81%	NRAS Q61K	NRAS Q61K
FFPE#4	382,035	1329	81%	KRASG12D	KRASG12D
FFPE#5	307,626	891	75%	None	None

Table 7. Ion AmpliSeq[™] Cancer Panel Enrichment followed by Ion Torrent NGS detects cancer mutations in residual FFPE biopsies **Table 10.** R² correlation matrix of orthogonal enrichment methods. Correlations were derived from variant quantification using pooled cancer cell line DNA representing known mutations (Tables 2,8).

Figure 4. Percent mutation detected by 100 ng DNA into SuraSeq™ 7500 on GAIIx (Y) vs 10 ng DNA input on Ion AmpliSeq™ Ion Torrent (X).

Amp	icons	
	•	
	•	

llumina

GAIIx

	Expected %	Ion AmpliSeq	™ 316 Op1	Ion AmpliSeq	™ 314 Op2
Mutations	Mutation	% Recovered	# of Reads	% Recovered	# of Read
KRASG12C	20	18.6	14945	20.6	1124
TP53 R248W	20	15.1	6816	14.1	1033
HRAS G12V	10	15.9	1132	15.7	159
TP53 Y126	10	12.2+	4784+	7.7+	988+
BRAF V600E	7.5	9.4	22294	6.9	1212
NRAS Q61R	7	12.4	8178	11.6	1417
TP53 G245S	3.5	4.3+	7398+	3.1+	1024+
KRAS G12D	2.5	5.6	15295	5.2	1135
KRAS G13D	3	1.9	18602	1.2	1490
KRAS G12A	1	1.8	15295	2.2	1472
TP53 A159D	2	4.4+	2108+	1.8+	334+
KRAS G12S	35	34.1	14945	32.2	1124
STK11 Q37*	35	31.2	9269	29.2	995

Table 8. Ion AmpliSeq[™] Cancer Panel Enrichment followed by Ion Torrent NGS quantitatively recovers known mutations from pooled cancer cell DNA. R²=0.98 for comparison of quantitative mutation detection between Op1 on 316 chip and Op2 on 314 chip. Barcoding was not available for these sample runs.

consistent with independent methods. Barcoding was not available for these sample runs.

CONCLUSIONS

Sample

CM0040

CM0041

CM0042

CM0043

CM0044

CM0045

GA

apMap1

0.31

0.03

0.07

0.1

0.14

0.21

0.27

0.38

0.04

0.08

0.13

0.18

0.16

0.24

0.36

0.04

0.09

0.12

0.14

0.17

0.26

0.4

0.05

0.09

0.08

0.11

0.16

0.23

0.36

0.04

• Three distinct PCR workflows enabled high depth enrichment of cancer-associated gene regions in FFPE and FNA DNA from clinical specimens.

• Mutation loads as low as 1-3% could be accurately identified in both cancer cell line and FFPE tumor DNA; "background" variant detection was only ~0.3%.

• Ion Torrent NGS successfully confirmed novel mutations from screening studies using the Illumina GAIIx, suggesting utility for high sensitivity orthogonal mutation confirmation using a second NGS system.

• SuraSeq[™] cancer gene panels supported a streamlined protocol, low DNA inputs, multiplex target amplification, and, importantly, efficient multi-sample barcoding, even on the Ion Torrent PGM.

 The three proposed NGS approaches can accommodate both large-scale, whole exon mutation assessments in ~96 samples per run, as well as "hotspot" mutation analyses across 15-50 genes with a rapid turnaround time (<1 week).